Robust Feedback Compensator Design for Linear Parabolic DPSs with Pointwise/Piecewise Control and Pointwise/Piecewise Measurement
Author(s) -
Yaqiang Liu,
Zhigang Ren,
Zengwang Jin
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6660857
Subject(s) - pointwise , piecewise , mathematics , lyapunov function , interval (graph theory) , mathematical analysis , combinatorics , physics , quantum mechanics , nonlinear system
In this paper, a robust H ∞ control problem of a class of linear parabolic distributed parameter systems (DPSs) with pointwise/piecewise control and pointwise/piecewise measurement has been investigated via the robust H ∞ feedback compensator design approach. A unified Lyapunov direct approach is proposed in consideration of the pointwise/piecewise control and point/piecewise measurement based on the distributions of the actuators and sensors. A new type of Luenberger observer is developed on the continuous interval of space domain to track the state of the system, and an H ∞ performance constraint with prescribed H ∞ attenuation levels is proposed in this paper. By utilizing Lyapunov technique, mathematical inequalities, and integration theory, a sufficient condition based on LMI for the exponential stability of the corresponding closed-loop coupled system under an H ∞ performance constraint is presented. Finally, the effectiveness of the proposed design method is verified by numerical simulation results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom