z-logo
open-access-imgOpen Access
A Method to Simulate the Migration and Accumulation of Hydrocarbon with Analogue Modeling
Author(s) -
Jian Cui,
Dong Jia,
Hongbin Wang,
Hongwei Yin,
Yanjun Wang,
Delong Ma,
Wujun Wu,
Ziyan Jing,
Xiaogen Fan,
Lida Shen,
Xiaojun Wu,
Wenqiang Liu,
Xiulei Yang
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/6660760
Subject(s) - anticline , geology , petrology , silicic , hydrocarbon , mineralogy , petroleum engineering , geochemistry , geotechnical engineering , seismology , tectonics , chemistry , basalt , organic chemistry
Subsurface migration and accumulation of oil and gas have interested researchers for a long time, but these processes may occur over very long geological periods and are difficult to observe directly, so experimental simulations are warranted. In this study, an experimental method was developed to model hydrocarbon migration in the subsurface structure. Oil migration was simulated in a sandbox model, and industrial CT scanning was used to observe both the internal geometry of the model and the oil migration pathways. In the sandbox model, a NaI solution was used to simulate water, white oil was used to simulate hydrocarbon, and fine quartz sand, glass bead, silica powder, and brown corundum were chosen to represent brittle crust, based on suitable material parameters. A NaI-saturated layered sandbox model was constructed with an along-strike basal discontinuity, which during compression allowed a simple anticline with doubly verging reverse faults to form. Oil was then released continuously at a low rate from an orifice under one limb of the anticline. Initially, the oil migrated vertically through the fault zone until it reached the top of the fault zone; it then migrated laterally along the core of the anticline, saturating a model reservoir by buoyancy and capillary force. This experimental analog helps to explain hydrocarbon migration and accumulation within the Anjihai and Santai anticlines in northwest China.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom