z-logo
open-access-imgOpen Access
Deep-Feature-Based Autoencoder Network for Few-Shot Malicious Traffic Detection
Author(s) -
Mingshu He,
Xiaojuan Wang,
Junhua Zhou,
Yuanyuan Xi,
Lei Jin,
Xinlei Wang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/6659022
Subject(s) - autoencoder , computer science , anomaly detection , artificial intelligence , deep learning , convolutional neural network , intrusion detection system , cluster analysis , pattern recognition (psychology) , feature (linguistics) , key (lock) , machine learning , data mining , computer security , philosophy , linguistics
With the increase of Internet visits and connections, it is becoming essential and arduous to protect the networks and different devices of the Internet of Things (IoT) from malicious attacks. The intrusion detection systems (IDSs) based on supervised machine learning (ML) methods require a large number of labeled samples. However, the number of abnormal behaviors is far less than that of normal behaviors, let alone that the shots of malicious behavior samples which can be intercepted as training dataset are actually limited. Consequently, it is a key research topic to conduct the anomaly detection for the small number of abnormal behavior samples. This paper proposes an anomaly detection model with a few abnormal samples to solve the problem in few-shot detection based on convolutional neural networks (CNN) and autoencoder (AE). This model mainly consists of the CNN-based supervised pretraining module and the AE-based data reconstruction module. Only a few abnormal samples are utilized to the pretrain module to build the structure of extracting deep features. The data reconstruction module simply chooses the deep features of normal samples as training data. There also exist some effective attention mechanisms in the pretraining module. Through the pretraining of small samples, the accuracy of abnormal detection is improved compared with merely training normal samples with AE. The simulation results prove that this solution can solve the above problems occurring in network behavior anomaly detection. In comparison to the original AE model and other clustering methods, the proposed model advances the detection results in a visible way.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom