z-logo
open-access-imgOpen Access
Numerical Simulation and Experimental Study on Shaped Charge Warhead of Guided Ammunition
Author(s) -
Guangsong Ma,
Guanglin He
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6658676
Subject(s) - warhead , shaped charge , penetration (warfare) , ammunition , aluminium , copper , materials science , projectile , computer simulation , metallurgy , mechanics , physics , engineering , chemistry , aerospace engineering , explosive material , organic chemistry , operations research
To study the jet penetration capability of shaped charge warhead of guided ammunition, a variable cone angle-shaped charge liner was designed. LS-DYNA software is used to simulate the penetration capability of shaped charge warhead with three different metal materials (copper, steel, and aluminum). Numerical simulation results show that the velocity of the shaped charge jet formed by the three kinds of materials is v aluminum > v copper > v steel , and the residual velocity after penetration is V steel > V aluminum > V copper , the time when the jet starts to break is tcopper > tsteel > taluminum, and the penetration completion time is Tcopper < Taluminum < Tsteel; therefore, according to the numerical simulation results, copper was selected as the liner material, and the principle prototype is made for the experiment. The results of numerical simulation and experiment show that the shaped charge warhead with copper shaped charge liner has good penetration ability and after-effect damage ability to steel target after penetrating the guidance section, steering gear section, and control section.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom