z-logo
open-access-imgOpen Access
A Hybrid MADM Model for Newly Graduated Nurse’s Competence Evaluation and Improvement
Author(s) -
Fengmin Cheng,
Yanjun Jin,
ChingWen Chien,
Lei Xiong,
YenChing Chuang
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/6658538
Subject(s) - competence (human resources) , nursing , psychology , computer science , medicine , social psychology
Nursing departments in hospitals must evaluate the practical competency of newly graduated nurses and assist them to increase their competence. Competency assessments often consider multiple qualitative attributes and use expert knowledge as the basis for decision-making. This study proposes a hybrid multiple attribute decision-making (MADM) model that determines practical competency of the newly graduated nurse as an evaluation framework. A causal influence-network diagram (CIND) and influential weights are obtained from nursing experts' clinical experience using the decision-making trial and evaluation laboratory (DEMATEL)-based analytical network process analysis (DANP). The MOORA-AS method is then used to evaluate the ability expectation ratio-gap for newly graduated nurses in practice. The CIND is used to allow each newly graduated nurse to reduce the performance ratio-gaps between the current level and the aspirational level from a systematic perspective. The empirical data applies to a third-class and a first-class hospital in China. The results show that the proposed hybrid MADM model has reliable results and allows nursing department decision-makers/managers to easily evaluate and systematically improve competencies for newly graduated nurses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom