z-logo
open-access-imgOpen Access
Therapeutic Effects of Conditioned Medium of Neural Differentiated Human Bone Marrow-Derived Stem Cells on Rotenone-Induced Alpha-Synuclein Aggregation and Apoptosis
Author(s) -
Mahesh Ramalingam,
Sujeong Jang,
HanSeong Jeong
Publication year - 2021
Publication title -
stem cells international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 64
eISSN - 1687-9678
pISSN - 1687-966X
DOI - 10.1155/2021/6658271
Subject(s) - rotenone , chemistry , tyrosine hydroxylase , mesenchymal stem cell , neural stem cell , stem cell , microbiology and biotechnology , biochemistry , biology , mitochondrion , enzyme
Mesenchymal stem cells (MSCs) have been used against several diseases. Their potential mainly appears from its secreted biomolecules. Human bone marrow-derived stem cells (hBMSC) displayed neuronal functional characteristics after differentiation by basic fibroblast growth factor (bFGF) and forskolin. PD is a chronic age-related neurodegenerative disease (NDD) characterized by loss of dopaminergic neurons in the substantia nigra (SN) and abnormal accumulation of α -synuclein ( α -syn) aggregations. In this present study, we evaluated the therapeutic effects of neural differentiated hBMSC (NI-hBMSC) conditioned medium (NI-hBMSC-CM) to a rotenone- (ROT-) induced Parkinson's disease (PD) model in SH-SY5Y cells. NI-hBMSC-CM treatment (50% diluted) in the last 24 h of 48 h ROT (0.5  μ M) toxicity showed a significant increase in cell survival. The decreased tyrosine hydroxylase (TH) expression as a hallmark of PD was increased by NI-hBMSC-CM. The Triton X-100-soluble and Triton X-100-insoluble cell lysate fractions were used in Western blotting. The oligomeric, dimeric, and monomeric phosphorylated serine129 (p-S129) α -syn and total monomeric α -syn were decreased during ROT toxicity in the Triton X-100-soluble fraction. The Triton X-100-insoluble fraction revealed that ROT toxicity significantly increased the oligomeric but decreased the dimeric and monomeric p-S129 α -syn expressions while all forms of total α -syn were increased in SH-SY5Y cells. NI-hBMSC-CM stabilized the physiological α -syn monomers and reduced aggregated insoluble p-S129 α -syn against ROT. The cytoskeletal proteins, neurofilament-H (NF-H), β 3-tubulin (Tuj1), neuronal nuclei (NeuN), and synaptophysin (SYP) were significantly decreased during ROT toxicity. In addition, proapoptotic Bax was increased by ROT with decreased antiapoptotic Bcl-2 and Mcl-1 as well as proforms of caspase-9, caspase-3, caspase-7, and PARP-1. NI-hBMSC-CM ameliorated the neurotrophic protein expressions, controlled the Bax/Bcl-2 ratio, upregulated procaspases, and inactivated PARP-1. From our results, we conclude that NI-hBMSC-CM containing released biomolecules during neural differentiation employs regenerative effects on the ROT model of PD in SH-SY5Y cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom