z-logo
open-access-imgOpen Access
COVID-19 Diagnosis Using an Enhanced Inception-ResNetV2 Deep Learning Model in CXR Images
Author(s) -
Madallah Alruwaili,
Abdulaziz Shehab,
Sameh Abd El-Ghany
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/6658058
Subject(s) - deep learning , convolutional neural network , artificial intelligence , covid-19 , computer science , residual , field (mathematics) , visualization , machine learning , pattern recognition (psychology) , algorithm , medicine , pathology , mathematics , infectious disease (medical specialty) , disease , pure mathematics
The COVID-19 pandemic has a significant negative effect on people's health, as well as on the world's economy. Polymerase chain reaction (PCR) is one of the main tests used to detect COVID-19 infection. However, it is expensive, time-consuming, and lacks sufficient accuracy. In recent years, convolutional neural networks have grabbed many researchers' attention in the machine learning field, due to its high diagnosis accuracy, especially the medical image recognition. Many architectures such as Inception, ResNet, DenseNet, and VGG16 have been proposed and gained an excellent performance at a low computational cost. Moreover, in a way to accelerate the training of these traditional architectures, residual connections are combined with inception architecture. Therefore, many hybrid architectures such as Inception-ResNetV2 are further introduced. This paper proposes an enhanced Inception-ResNetV2 deep learning model that can diagnose chest X-ray (CXR) scans with high accuracy. Besides, a Grad-CAM algorithm is used to enhance the visualization of the infected regions of the lungs in CXR images. Compared with state-of-the-art methods, our proposed paper proves superiority in terms of accuracy, recall, precision, and F 1-measure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom