z-logo
open-access-imgOpen Access
Indoor Detection and Tracking of People Using mmWave Sensor
Author(s) -
Xu Huang,
Hasnain Cheena,
Abin Thomas,
Joseph K. P. Tsoi
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/6657709
Subject(s) - tracking (education) , computer science , real time computing , psychology , pedagogy
This paper proposes a new indoor people detection and tracking system using a millimeter-wave (mmWave) radar sensor. Firstly, a systematic approach for people detection and tracking is presented—a static clutter removal algorithm used for removing mmWave radar data’s static points. Two efficient clustering algorithms are used to cluster and identify people in a scene. The recursive Kalman filter tracking algorithm with data association is used to track multiple people simultaneously. Secondly, a fast indoor people detection and tracking system is designed based on our proposed algorithms. The method is lightweight enough for scalability and portability, and we can execute it in real time on a Raspberry Pi 4. Finally, the proposed method is validated by comparing it with the Texas Instruments (TI) system. The proposed system’s experimental accuracy ranged from 98% (calculated by misclassification errors) for one person to 65% for five people. The average position errors at positions 1, 2, and 3 are 0.2992 meters, 0.3271 meters, and 0.3171 meters, respectively. In comparison, the Texas Instruments system had an experimental accuracy ranging from 96% for one person to 45% for five people. The average position errors at positions 1, 2, and 3 are 0.3283 meters, 0.3116 meters, and 0.3343 meters, respectively. The proposed method’s advantage is demonstrated in terms of tracking accuracy, computation time, and scalability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom