TOPSIS Method Based on the Correlation Coefficient of Interval-Valued Intuitionistic Fuzzy Soft Sets and Aggregation Operators with Their Application in Decision-Making
Author(s) -
Rana Muhammad Zulqarnain,
Xiao Long Xin,
Muhammad Saqlain,
Waseem Asghar Khan
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/6656858
Subject(s) - mathematics , topsis , soft set , fuzzy set , similarity (geometry) , ideal solution , interval (graph theory) , extension (predicate logic) , correlation coefficient , fuzzy logic , preference , mathematical optimization , data mining , artificial intelligence , statistics , computer science , combinatorics , operations research , physics , image (mathematics) , thermodynamics , programming language
The correlation coefficient between the two parameters plays a significant part in statistics. Furthermore, the exactness of the assessment of correlation depends upon information from the set of discourses. The data collected for various statistical studies are full of ambiguities. The idea of interval-valued intuitionistic fuzzy soft sets is an extension of intuitionistic fuzzy soft sets that is used to express insufficient evaluation, uncertainty, and anxiety in decision-making. Intuitionistic fuzzy soft sets consider two different types of information, such as membership degree and nonmembership degree. In this paper, the concepts and properties of the correlation coefficient and the weighted correlation coefficient of interval-valued intuitionistic fuzzy soft sets are proposed. A prioritization technique for order preference by similarity to the ideal solution based on interval-valued intuitionistic fuzzy soft sets of correlation coefficients and the weighted correlation coefficient is introduced. We also proposed interval-valued intuitionistic fuzzy soft weighted average and interval-valued intuitionistic fuzzy soft weighted geometric operators and developed decision-making techniques based on the proposed operators. By using the developed techniques, a method for solving decision-making problems is proposed. To ensure the applicability of the proposed methods, an illustrative example is given. Finally, we present a comparison of some existing methods with our proposed techniques.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom