TS‐PADM: Anomaly Detection Model of Wireless Sensors Based on Spatial‐Temporal Feature Points
Author(s) -
Fengjiao Wang,
Ruixing Li,
Hua Wang,
Hengliang Zhu,
Naixue Xiong
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/6656498
Subject(s) - computer science , anomaly detection , discriminative model , data mining , feature (linguistics) , cluster analysis , spatial analysis , artificial intelligence , pattern recognition (psychology) , anomaly (physics) , feature vector , remote sensing , linguistics , philosophy , physics , condensed matter physics , geology
In the practical application, sensor data collection is an essential means for the system to perceive the intrinsic features of data. The anomaly detection of data points can improve data quality and explore the potential information of data. The anomaly detection can be classified as two basic types, that is, classification and clustering. Those methods usually depend on the spatial correlation of data and have high computation complexity, so they are not suitable for the smart home and another mini-Internet of Things (IoT) environment. To overcome these problems, we propose a novel method for anomaly detection. In this paper, we first define the temporal and spatial feature of data flows; then, a time series denoising autoencoder (TSDA) is proposed to extract the discriminative high-dimensional characteristics to represent the data points. Moreover, a probability statistics-based anomaly detection model (PADM) was proposed for identifying the abnormal data. Extensive experimental results demonstrated that our method has fewer parameters and is easy to adjust and optimize. More importantly, our approach has higher precision and recall rate than the gradient boosted decision tree and XGBoot.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom