Jatropha Oil as a Substituent for Palm Oil in Biobased Polyurethane
Author(s) -
Mohamad Ridzuan Amri,
Syeed Saifulazry Osman Al-Edrus,
Chuah Teong Guan,
Faizah Md Yasin,
Seng Hua Lee
Publication year - 2021
Publication title -
international journal of polymer science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 33
eISSN - 1687-9430
pISSN - 1687-9422
DOI - 10.1155/2021/6655936
Subject(s) - jatropha , palm oil , petrochemical , petroleum , pulp and paper industry , business , microbiology and biotechnology , environmental science , waste management , agroforestry , chemistry , engineering , biodiesel , organic chemistry , biology , catalysis
Polyurethanes (PUs) are unique polymers that can be tailored to suit certain applications and are increasingly used in many industrial fields. Petrochemicals are still used as the main compound to synthesize PUs. Today, environmental concerns arise in the research and technology innovations in developing PUs, especially from vegetable polyols which are having an upsurge. These are driven by the uncertainty and fluctuations of petroleum crude oil price and availability. Jatropha has become a promising substituent to palm oil so as to reduce the competition of food and nonfood in utilizing this natural resource. Apart from that, jatropha will solve the problem related to the European banning of palm oil. Herein, we review the literature on the synthesis of PUs using different vegetable oils and compare it with jatropha oil and its nanocomposites reinforced with cellulose nanocrystals. Given the potential of vegetable oil PUs in many industrial applications, we expect that they will increase commercial interest and scientific research to bring these materials to the market soon.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom