Serum Exosomes Derived from Irritable Bowel Syndrome Patient Increase Cell Permeability via Regulating miR-148b-5p/RGS2 Signaling in Human Colonic Epithelium Cells
Author(s) -
Ying Xing,
Shan Xue,
Jing Wu,
Jianhong Zhou,
Fangfang Xing,
Tianxing Li,
Xiaohu Nie
Publication year - 2021
Publication title -
gastroenterology research and practice
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.622
H-Index - 45
eISSN - 1687-630X
pISSN - 1687-6121
DOI - 10.1155/2021/6655900
Subject(s) - microvesicles , irritable bowel syndrome , downregulation and upregulation , regulator of g protein signaling , exosome , microrna , medicine , pathogenesis , intestinal permeability , rgs2 , immunology , microbiology and biotechnology , biology , g protein , gene , receptor , biochemistry , gtpase activating protein
Aim Irritable bowel syndrome (IBS) is a multifactorial functional bowel disorder characterized by disruption of the intestinal barrier. Circulating exosomal microRNAs (miRNAs) are involved in regulating epithelial barrier function, and upregulation of miR-148b-5p has been detected in IBS. However, whether exosomal miR-148-5p is involved in the IBS pathogenesis remains unclear. This study was aimed at investigating the relationship of exosomal miR-148-5p with colonic epithelial permeability.Methods Exosomes were isolated from the serum of IBS patients and healthy controls. HT-29 cells were cultured with the IBS-derived serum exosomes (IBS-exo). Exosome uptake assay was used to evaluate whether the IBS-exo could be absorbed by HT-29 cells. FITC-Dextran flux and transepithelial/endothelial electrical resistance were measured to evaluate epithelial permeability. A luciferase reporter assay was used to determine whether the regulator of G protein signaling- (RGS-) 2 is a target gene of miR-148b-5p.Results miR-148b-5p was obviously elevated in the IBS-exo compared to the control-exo. Upregulation of miR-148b-5p was observed in the HT-29 cells cultured with IBS-exo. Exposure to IBS-exo increased cell permeability and decreased RGS2 expression. The IBS-exo-induced alterations were obviously reversed by interfering with the miR-148b-5p expression. Mimicking the IBS-exo treatment, miR-148b-5p overexpression increased cell permeability and downregulated RGS2 expression, which were abrogated by overexpressing RGS2. The luciferase reporter assay revealed that RGS2 was a direct target of miR-148b-5p.Conclusions Serum-derived exosomes from IBS patients increase colonic epithelial permeability via miR-148b-5p/RGS2 signaling.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom