z-logo
open-access-imgOpen Access
Geochemical Modeling of Water-Rock Interaction Processes in the Pollino National Park
Author(s) -
Carmine Apollaro,
Ilaria Fuoco,
Luigi Bloise,
Egidio Calabrese,
Luigi Marini,
Giovanni Vespasiano,
Francesco Muto
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/6655711
Subject(s) - dolomite , geology , dissolution , geochemical modeling , carbonate , national park , silicate , geochemistry , stoichiometry , mineralogy , groundwater , archaeology , materials science , chemistry , geotechnical engineering , organic chemistry , metallurgy , history
This work is aimed at reconstructing the water-rock interaction processes controlling the geochemical characteristics of the shallow or relatively shallow groundwaters of the Pollino National Park, based on the data acquired for 105 water samples from local springs. Reaction path modeling of rock dissolution was carried out in a purely stoichiometric mode for the main lithotypes cropping out in the study area, that is, limestone, Mg-limestone, dolomite, serpentinite, Al-silicate fraction of calcschist, and carbonate fraction of calcschist. Reaction path modeling was carried out in a purely stoichiometric mode, considering the rocks of interest as materials of known stoichiometry and unknown thermodynamic properties. Calculations were carried out assuming a closed system for secondary solid phases whereas an open system was assumed for gases, O2(g) and CO2(g). Comparison of the results of geochemical modeling and the analytical data acquired for the groundwaters of the Pollino National Park shows that concentrations of major solutes, SiO2, Li, Al, and Fe of the different chemical types of waters, are explained by the dissolution of pertinent lithotypes. Moreover, the detected concentrations of Al, Cl, F, NO3, and SO4 are within the threshold values recommended by WHO.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom