z-logo
open-access-imgOpen Access
Comprehensive Analysis of Common Different Gene Expression Signatures in the Neutrophils of Sepsis
Author(s) -
ZhaoJun Liu,
Yang Chen,
Tingting Pan,
Jialin Liu,
Rui Tian,
Shaoqiong Sun,
Hongping Qu,
Erzhen Chen
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/6655425
Subject(s) - sepsis , biology , gene , immune system , inflammation , gene expression , pathogenesis , signal transduction , downregulation and upregulation , immunology , computational biology , genetics
The central component of sepsis pathogenesis is inflammatory disorder, which is related to dysfunction of the immune system. However, the specific molecular mechanism of sepsis has not yet been fully elucidated. The aim of our study was to identify genes that are significantly changed during sepsis development, for the identification of potential pathogenic factors. Differentially expressed genes (DEGs) were identified in 88 control and 214 septic patient samples. Gene ontology (GO) and pathway enrichment analyses were performed using David. A protein-protein interaction (PPI) network was established using STRING and Cytoscape. Further validation was performed using real-time polymerase chain reaction (RT-PCR). We identified 37 common DEGs. GO and pathway enrichment indicated that enzymes and transcription factors accounted for a large proportion of DEGs; immune system and inflammation signaling demonstrated the most significant changes. Furthermore, eight hub genes were identified via PPI analysis. Interestingly, four of the top five upregulated and all downregulated DEGs were involved in immune and inflammation signaling. In addition, the most intensive hub gene AKT1 and the top DEGs in human clinical samples were validated using RT-PCR. This study explored the possible molecular mechanisms underpinning the inflammatory, immune, and PI3K/AKT pathways related to sepsis development.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom