z-logo
open-access-imgOpen Access
A Tightly Coupled BDS/INS Integrated Positioning Algorithm Based on Triple-Frequency Single-Epoch Observations
Author(s) -
Fei Ye,
Shuguo Pan,
Wang Gao,
Hao Wang,
Chun Ma,
Yunfeng Wang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6653625
Subject(s) - pseudorange , ambiguity resolution , beidou navigation satellite system , gnss applications , epoch (astronomy) , satellite system , computer science , precise point positioning , global positioning system , inertial navigation system , stability (learning theory) , satellite navigation , satellite , signal (programming language) , real time computing , algorithm , physics , inertial frame of reference , telecommunications , computer vision , stars , quantum mechanics , machine learning , programming language , astronomy
Vehicular dynamic positioning based on tightly coupled (TC) Global Navigation Satellite System (GNSS)/Inertial Navigation System (INS) integration in urban areas is due to either low accuracy of pseudorange or poor continuity of carrier phase, resulting in insufficient positioning performance. To enhance the stability while ensuring positioning accuracy, this paper proposed a tightly coupled Beidou Navigation Satellite System (BDS)/INS integration scheme by improving measurement modelling with triple-frequency observations: first, a stepwise single-epoch ambiguity resolution of extra-wide-lane (EWL)/wide-lane (WL) combined observations and then modelling the measurement equation with fixed WL observation instead of conventional pseudorange or carrier phase. Experiments were carried out for verification with data collected in real traffic by a measurement vehicle. The proposed method achieved single-epoch output with an RMS statistical accuracy of decimetre level of 0.152 m horizontally and 0.196 m vertically. The signal outage experiment verified that the proposed algorithm is restoring high-accuracy positioning output in single-epoch once the signal is recaptured. The proposed method obtained a positioning accuracy improvement of 43.6% horizontally and 6.2% vertically in signal outage sections compared to the conventional method. This avoids the multiepoch ambiguity searching to fix with conventional carrier-phase processing, thereby improving the positioning stability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom