z-logo
open-access-imgOpen Access
Computer-Aid Directed Evolution of GPPS and PS Enzymes
Author(s) -
Fei Chen,
Hong Cheng,
Jiaqi Zhu,
Shiyu Wang,
Liancheng Zhang,
Hao-Long Dong,
Gang Liu,
Huipeng Chen
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/6653500
Subject(s) - monoterpene , chemistry , isoprene , pyrophosphate , heterologous expression , isopentenyl pyrophosphate , yield (engineering) , substrate (aquarium) , enzyme , terpene , pinene , biochemistry , combinatorial chemistry , organic chemistry , recombinant dna , biology , gene , materials science , ecology , metallurgy , copolymer , polymer
Pinene, a natural active monoterpene, is widely used as a flavoring agent, perfume, medicine, and biofuel. Although genetically engineered microorganisms have successfully produced pinene, to date, the biological yield of pinene is much lower than that of semiterpenes (isoprene) and sesquiterpenes (farnesene). In addition to the low heterologous expression of geranyl pyrophosphate synthase (GPPS) and pinene synthase (PS), cytotoxicity due to accumulation of the monoterpene also limits the production of pinene in microorganisms. In this study, we attempted to use two strategies to increase the biological yield of pinene. By deleting the random coils of GPPS and PS alone or in combination, a strain with a 335% yield increase was obtained. Additionally, upon computer-guided molecular modeling and docking of GPPS with isopentenyl pyrophosphate (IPP), its substrate, the key sites located within the catalytic pocket for substrate binding, was predicted. After screening, a strain harboring the T273R mutation of GPPS was selected among a batch of mutations of the key sites with a 154% increase in pinene yield.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom