z-logo
open-access-imgOpen Access
Effective Material Basis and Mechanism Analysis of Compound Banmao Capsule against Tumors Using Integrative Network Pharmacology and Molecular Docking
Author(s) -
Tianmu He,
Jingxian Liu,
Cancan Duan,
Xiaofei Li,
Jianyong Zhang
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/6653460
Subject(s) - computational biology , docking (animal) , systems pharmacology , interaction network , biology , chemistry , pharmacology , drug , biochemistry , medicine , gene , nursing
Purpose Compound banmao capsule (CBC), a well-known traditional Chinese medical material, is known to inhibit various tumors. However, its material basis and pharmacological mechanisms remain to be elucidated. This study aimed to investigate the effective material basis and mechanisms of action of CBC against tumors.Methods Active compounds of CBC were identified using public database and reports to build a network. The corresponding targets of active compounds were retrieved from online databases, and the antitumor targets were identified by GeneCards database. The antitumor hub targets were generated via protein-protein interaction analysis using String, and key compounds and targets from the integrative network were detected by molecular docking and ADMET. Top targets in hepatocellular carcinoma were confirmed by quantitative real-time PCR (qPCR). Finally, the multivariate biological network was built to identify the integrating mechanisms of action of CBC against tumor cells.Results A total of 128 compounds and 436 targets of CBC were identified successfully. Based on the generated multivariate biological network analysis, 25 key compounds, nine hub targets, and two pathways were further explored. Effective material bases of cantharidin, baicalein, scutellarin, sesamin, and quercetin were verified by integrative network analysis. PTGS2, ESR1, and TP53 were identified as hub targets via multivariate biological network analysis and confirmed using qPCR. Furthermore, VEGF and estrogen signaling pathways seem to play a role in the antitumor activity of CBC. Thus, breast cancer may be a potential clinical indication of CBC.Conclusion This study successfully identified the material basis of CBC and its synergistic mechanisms of action against tumor cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom