z-logo
open-access-imgOpen Access
Formulation of a New Mixed Four-Node Quadrilateral Element for Static Bending Analysis of Variable Thickness Functionally Graded Material Plates
Author(s) -
Pham Van Vinh
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6653350
Subject(s) - quadrilateral , finite element method , bending , bending of plates , structural engineering , distortion (music) , shear (geology) , computation , boundary value problem , node (physics) , materials science , mathematics , mathematical analysis , engineering , composite material , algorithm , amplifier , optoelectronics , cmos
A new mixed four-node quadrilateral element (MiQ4) is established in this paper to investigate functionally graded material (FGM) plates with variable thickness. The proposed element is developed based on the first-order shear deformation and mixed finite element technique, so the new element does not need any selective or reduced numerical integration. Numerous basic tests have been carried out to demonstrate the accuracy and convergence of the proposed element. Besides, the numerical examples show that the present element is free of shear locking and is insensitive to the mesh distortion, especially for the case of very thin plates. The present element can be applied to analyze plates with arbitrary geometries; it leads to reducing the computation cost. Several parameter studies are performed to show the roles of some parameters such as the power-law index, side-to-thickness ratio, boundary conditions (BCs), and variation of the plate thickness on the static bending behavior of the FGM plates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom