z-logo
open-access-imgOpen Access
Towards Face Presentation Attack Detection Based on Residual Color Texture Representation
Author(s) -
Yuting Du,
Tong Qiao,
Ming Xu,
Ning Zheng
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/6652727
Subject(s) - computer science , artificial intelligence , discriminative model , computer vision , classifier (uml) , facial recognition system , face detection , rgb color model , preprocessor , pattern recognition (psychology)
Most existing face authentication systems have limitations when facing the challenge raised by presentation attacks, which probably leads to some dangerous activities when using facial unlocking for smart device, facial access to control system, and face scan payment. Accordingly, as a security guarantee to prevent the face authentication from being attacked, the study of face presentation attack detection is developed in this community. In this work, a face presentation attack detector is designed based on residual color texture representation (RCTR). Existingmethods lack of effective data preprocessing, and we propose to adopt DWfilter for obtaining residual image, which can effectively improve the detection efficiency. Subsequently, powerful CM texture descriptor is introduced, which performs better than widely used descriptors such as LBP or LPQ. Additionally, representative texture features are extracted from not only RGB space but also more discriminative color spaces such as HSV, YCbCr, and CIE 1976 L∗a∗b (LAB). Meanwhile, the RCTR is fed into the well-designed classifier. Specifically, we compare and analyze the performance of advanced classifiers, among which an ensemble classifier based on a probabilistic voting decision is our optimal choice. Extensive experimental results empirically verify the proposed face presentation attack detector’s superior performance both in the cases of intradataset and interdataset (mismatched training-testing samples) evaluation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom