Dynamic Air Target Threat Assessment Based on Interval-Valued Intuitionistic Fuzzy Sets, Game Theory, and Evidential Reasoning Methodology
Author(s) -
Ruojing Zhao,
Fengbao Yang,
Linna Ji,
Yongqiang Bai
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6652706
Subject(s) - interval (graph theory) , entropy (arrow of time) , fuzzy logic , computer science , artificial intelligence , threat assessment , game theory , air combat , evidential reasoning approach , ranking (information retrieval) , mathematics , data mining , mathematical optimization , operations research , decision support system , mathematical economics , combinatorics , business decision mapping , physics , computer security , quantum mechanics
In order to reduce the uncertainty of target threat assessment results and improve exact target assessment in the complicated and changeable air combat environment, a novel method based on the combination of interval-valued intuitionistic fuzzy sets (IVIFSs), game theory, and evidential reasoning methodology is proposed in this paper. First, the imprecise and fuzzy information of battlefield air target is expressed by IVIFS. Second, the optimal index weight is determined by the interval intuitionistic fuzzy entropy and game theory. And the time series weight is calculated by the inverse Poisson distribution method. Then, the target evaluation information at different times is dynamically fused through an evidential reasoning algorithm. Finally, the accuracy function is applied to obtain the threat ranking of all the targets. A case of the threat assessment of air targets is provided to demonstrate the implementation process of the method proposed in this paper. Simulation experiments show that in a rapidly evolving combat environment, this algorithm can effectively reduce the uncertainty of target threat assessment results. It provides us with a useful way for target threat assessment based on interval-valued intuitionistic fuzzy sets, game theory, and evidential reasoning methodology.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom