z-logo
open-access-imgOpen Access
On Solutions of the Matrix Equation A l X = B with respect to M M -2 Semitensor Product
Author(s) -
Jin Wang
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/6651434
Subject(s) - mathematics , matrix (chemical analysis) , product (mathematics) , dimension (graph theory) , matrix multiplication , algebra over a field , combinatorics , pure mathematics , geometry , physics , materials science , composite material , quantum , quantum mechanics
M M -2 semitensor product is a new and very useful mathematical tool, which breaks the limitation of traditional matrix multiplication on the dimension of matrices and has a wide application prospect. This article aims to investigate the solutions of the matrix equation A ° l X = B with respect to M M -2 semitensor product. The case where the solutions of the equation are vectors is discussed first. Compatible conditions of matrices and the necessary and sufficient condition for the solvability is studied successively. Furthermore, concrete methods of solving the equation are provided. Then, the case where the solutions of the equation are matrices is studied in a similar way. Finally, several examples are given to illustrate the efficiency of the results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom