z-logo
open-access-imgOpen Access
An Instantaneous Engine Speed Estimation Method Using Multiple Matching Synchrosqueezing Transform
Author(s) -
Youyong Liu,
He Wen,
Zongying Ding,
Lei Xu,
Hongjiang Chen,
Janusz Smulko
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/6650432
Subject(s) - matching (statistics) , estimation , computer science , mathematics , statistics , engineering , systems engineering
Instantaneous rotational speed measurement of the engine is crucial in routine inspection and maintenance of an automobile engine. Since the contact measurement of rotational speed is not always available, the vibration measurement has been used for noncontact rotational speed estimation methods. Unfortunately, the accuracy of the noncontact estimation methods by analyzing engine vibration frequency is not satisfactory due to the influence of noise and the strong nonstationary characteristic of the vibration signal. To overcome these problems, based on the multiple matching synchrosqueezing transform (MSST) (MMSST, improved MSST with multiple squeeze operations), a novel noncontact method is proposed to accurately estimate the instantaneous rotational speed of automobile engine in this paper. Firstly, a MMSST is proposed to process the vibration signal to obtain a concentrated time-frequency (TF) representation. Secondly, the instantaneous frequency (IF) detection algorithm is employed to extract the fundamental frequency from the TF result. Finally, the rotational speed of the engine is calculated according to the relationship between the fundamental frequency and rotational speed. Results from numerical simulations and test on real engine have proven that the proposed method can obtain much higher frequency resolution and more precise IF estimation of the engine vibration signal and more accurate rotational speed estimation result compared with the MSST method. Furthermore, the proposed method is verified to have a stronger noise robustness and can provide satisfactory estimation results for engine vibration signal containing nonlinear frequency-modulated components.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom