On Harmonic Index and Diameter of Quasi-Tree Graphs
Author(s) -
Adeleh Abdolghafourian,
Mohammad A. Iranmanesh
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/6650407
Subject(s) - mathematics , combinatorics
The harmonic index of a graph G (H(G)) is defined as the sum of the weights 2 du+dv for all edges uv of G, where du is the degree of a vertex u in G. In this paper, we show that H(G) ≥ D(G) + 5 3 − n 2 and H(G) ≥ (
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom