Deep Reinforcement Learning for Vectored Thruster Autonomous Underwater Vehicle Control
Author(s) -
Tao Liu,
Yuli Hu,
Hui Xu
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/6649625
Subject(s) - reinforcement learning , controller (irrigation) , computer science , underwater , control engineering , control (management) , robot , set (abstract data type) , control theory (sociology) , artificial intelligence , engineering , oceanography , agronomy , biology , geology , programming language
Autonomous underwater vehicles (AUVs) are widely used to accomplish various missions in the complex marine environment; the design of a control system for AUVs is particularly difficult due to the high nonlinearity, variations in hydrodynamic coefficients, and external force from ocean currents. In this paper, we propose a controller based on deep reinforcement learning (DRL) in a simulation environment for studying the control performance of the vectored thruster AUV. RL is an important method of artificial intelligence that can learn behavior through trial-and-error interactions with the environment, so it does not need to provide an accurate AUV control model that is very hard to establish. (e proposed RL algorithm only uses the information that can bemeasured by sensors inside the AUVs as the input parameters, and the outputs of the designed controller are the continuous control actions, which are the commands that are set to the vectored thruster. Moreover, a reward function is developed for deep RL controller considering different factors which actually affect the control accuracy of AUV navigation control. To confirm the algorithm’s effectiveness, a series of simulations are carried out in the designed simulation environment, which is a method to save time and improve efficiency. Simulation results prove the feasibility of the deep RL algorithm applied to the control system for AUV. Furthermore, our work also provides an optional method for robot control problems to deal with improving technology requirements and complicated application environments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom