Computer-Aided Diagnosis of COVID-19 CT Scans Based on Spatiotemporal Information Fusion
Author(s) -
Tianyi Li,
Wei Wei,
Lidan Cheng,
Shengjie Zhao,
Chuanjun Xu,
Xia Zhang,
Yi Zeng,
Jihua Gu
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/6649591
Subject(s) - covid-19 , artificial intelligence , computer science , computer aided diagnosis , segmentation , pattern recognition (psychology) , radiology , medicine , computer vision , pathology , disease , infectious disease (medical specialty)
Coronavirus disease (COVID-19) is highly contagious and pathogenic. Currently, the diagnosis of COVID-19 is based on nucleic acid testing, but it has false negatives and hysteresis. The use of lung CT scans can help screen and effectively monitor diagnosed cases. The application of computer-aided diagnosis technology can reduce the burden on doctors, which is conducive to rapid and large-scale diagnostic screening. In this paper, we proposed an automatic detection method for COVID-19 based on spatiotemporal information fusion. Using the segmentation network in the deep learning method to segment the lung area and the lesion area, the spatiotemporal information features of multiple CT scans are extracted to perform auxiliary diagnosis analysis. The performance of this method was verified on the collected dataset. We achieved the classification of COVID-19 CT scans and non-COVID-19 CT scans and analyzed the development of the patients' condition through the CT scans. The average accuracy rate is 96.7%, sensitivity is 95.2%, and F1 score is 95.9%. Each scan takes about 30 seconds for detection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom