An Apriori Algorithm-Based Association Rule Analysis to Identify Acupoint Combinations for Treating Diabetic Gastroparesis
Author(s) -
PingHsun Lu,
Jui-Lin Keng,
FuMing Tsai,
PoHsuan Lu,
ChanYen Kuo
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/6649331
Subject(s) - apriori algorithm , association rule learning , algorithm , data mining , medicine , a priori and a posteriori , pattern recognition (psychology) , computer science , artificial intelligence , philosophy , epistemology
We explored the potential association rules within acupoints in treating diabetic gastroparesis (DGP) using Apriori algorithm complemented with another partition-based algorithm, a frequent pattern growth algorithm. Apriori algorithm is a data mining-based analysis that is widely applied in various fields, such as business and medicine, to mine frequent patterns in datasets. To search for effective acupoint combinations in the treatment of DGP, we implemented Apriori algorithm to investigate the association rules of acupoints among 17 randomized controlled trials (RCTs). The acupoints were extracted from the 17 included RCTs. In total, 29 distinct acupoints were observed in the RCTs. The top 10 frequently selected acupoints were CV12, ST36, PC6, ST25, BL21, BL20, BL23, SP6, BL18, and ST21. The frequency pattern of acupoints achieved by using a frequent pattern growth algorithm also confirms the result. The results showed that the most associated rules were {BL23, BL18} ≥ {SP6}, {BL20, BL18} ≥ {PC6}, {PC6, BL18} ≥ {BL20}, and {SP6, BL18} ≥ {BL23} in the database. Acupoints, including BL23, BL18, SP6, BL20, and PC6, can be deemed as core elements of acupoint combinations for treating DGP.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom