An Improved Dual‐Kurtogram‐Based T2 Control Chart for Condition Monitoring and Compound Fault Diagnosis of Rolling Bearings
Author(s) -
Zhiyuan Jiao,
Wei Fan,
Zhenying Xu
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6649125
Subject(s) - kurtosis , fault (geology) , control limits , statistics , mathematics , algorithm , control chart , envelope (radar) , computer science , telecommunications , process (computing) , radar , seismology , geology , operating system
Condition monitoring and compound fault diagnosis are crucial key points for ensuring the normal operation of rotating machinery. A novel method for condition monitoring and compound fault diagnosis based on the dual-kurtogram algorithm and multivariate statistical process control is established in this study. The core idea of this method is the capability of the dual-kurtogram in extracting subbands. Vibration data under normal conditions are decomposed by the dual-kurtogram into two subbands. Then, the spectral kurtosis (SK) of Subband I and the envelope spectral kurtosis (ESK) of Subband II are formulated to construct a control limit based on kernel density estimation. Similarly, vibration data that need to be monitored are constructed into two subbands by the dual-kurtogram. The SK of Subband I and the ESK of Subband II are calculated to derive statistics based on the covariance determinant. An alarm will be triggered when the statistics exceed the control limit and suitable subbands for square envelope analysis are adopted to obtain the characteristic frequency. Simulation and experimental data are used to verify the feasibility of the proposed method. Results confirm that the proposed method can effectively perform condition monitoring and fault diagnosis. Furthermore, comparison studies show that the proposed method outperforms the traditional control chart, envelope analysis, and empirical mode decomposition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom