z-logo
open-access-imgOpen Access
A Novel Face Super-Resolution Method Based on Parallel Imaging and OpenVINO
Author(s) -
Zhijie Huang,
Wenbo Zheng,
Lan Yan,
Chao Gou
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6648983
Subject(s) - computer science , artificial intelligence , robustness (evolution) , superresolution , deep learning , inference , face (sociological concept) , image resolution , resolution (logic) , computer vision , pattern recognition (psychology) , image (mathematics) , social science , biochemistry , chemistry , sociology , gene
Face image super-resolution refers to recovering a high-resolution face image from a low-resolution one. In recent years, due to the breakthrough progress of deep representation learning for super-resolution, the study of face super-resolution has become one of the hot topics in the field of super-resolution. However, the performance of these deep learning-based approaches highly relies on the scale of training samples and is limited in efficiency in real-time applications. To address these issues, in this work, we introduce a novel method based on the parallel imaging theory and OpenVINO. In particular, inspired by the methodology of learning-by-synthesis in parallel imaging, we propose to learn from the combination of virtual and real face images. In addition, we introduce a center loss function borrowed from the deep model to enhance the robustness of our model and propose to apply OpenVINO to speed up the inference. To the best of our knowledge, it is the first time to tackle the problem of face super-resolution based on parallel imaging methodology and OpenVINO. Extensive experimental results and comparisons on the publicly available LFW, WebCaricature, and FERET datasets demonstrate the effectiveness and efficiency of the proposed method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom