z-logo
open-access-imgOpen Access
Feature Extraction of Sequence of Keystrokes in Fixed Text Using the Multivariate Hawkes Process
Author(s) -
Chang Zhang,
Yuchen Zhang,
Fulin Li
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6648726
Subject(s) - computer science , keystroke logging , artificial intelligence , feature extraction , classifier (uml) , pattern recognition (psychology) , adjacency list , keystroke dynamics , feature (linguistics) , process (computing) , data mining , support vector machine , algorithm , computer network , password , linguistics , philosophy , s/key , operating system
In this paper, we propose a new method of extracting the features of keystrokes. The Hawkes process based on exponential excitation kernel was used to model the sequence of keystrokes in fixed text, and the intensity function vector and adjacency matrix of the model obtained through training were regarded as the characteristics of the keystrokes. A visual analysis was carried out on the CMU keystroke raw data and the feature data extracted using the proposed method. We used one-class classifier to compare the classification effect of CMU keystroke raw data and the feature data extracted by the Hawkes process model and POHMM model. The experimental results show that the feature data extracted using the proposed method contains rich information to distinguish users. In addition, the feature data extracted using the proposed method has a slightly better classification performance than the original CMU keystroke data for some users who are not easy to distinguish.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom