z-logo
open-access-imgOpen Access
Study on the Influence of Sand Production on Seepage Capacity in Natural Gas Hydrate Reservoirs
Author(s) -
Yongmao Hao,
Jikai Liang,
Chuixian Kong,
Fan Ming-wu,
Hongzhi Xu,
Fan Yang,
Shiwei Yang
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/6647647
Subject(s) - permeability (electromagnetism) , natural gas , geology , petroleum engineering , porosity , geotechnical engineering , hydrate , cabin pressurization , wellbore , petrology , environmental science , materials science , waste management , chemistry , genetics , organic chemistry , membrane , engineering , composite material , biology
Sand production has become a common phenomenon in the exploitation of unconsolidated natural gas hydrate reservoirs, which will hinder the long-term production of natural gas hydrate reservoirs. However, there are few literatures reported on the influences in reservoir physical properties such as permeability and porosity, and production laws caused by sand production. This paper provides a numerical model, coupled with reservoir sand-gas-water multiphase flow processes, which is capable to simulate the process of sand production in natural gas hydrate reservoirs. The simulation results indicate that sand settlement is mainly concentrated near the wellbore due to the high concentration of migrated sand. The decrease in reservoir porosity and permeability caused by sand settlement has a significant impact on production. The impact of sand production on reservoir fluid fluidity shows that fluid flow is inhibited near the wellbore, while fluid flow performance increases far away from the wellbore. The numerical model and analysis presented here could provide useful insight into changes in reservoir physical properties and production laws caused by sand production in the natural gas hydrate-bearing marine sediments using depressurization method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom