Heteroclinic Cycles Imply Chaos and Are Structurally Stable
Author(s) -
Xiaoying Wu
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/6647132
Subject(s) - heteroclinic cycle , invariant (physics) , chaos (operating system) , mathematics , heteroclinic bifurcation , pure mathematics , computer science , physics , mathematical physics , computer security , quantum mechanics , nonlinear system , period doubling bifurcation , homoclinic orbit , bifurcation
This paper is concerned with the chaos of discrete dynamical systems. A new concept of heteroclinic cycles connecting expanding periodic points is raised, and by a novel method, we prove an invariant subsystem is topologically conjugate to the one-side symbolic system. Thus, heteroclinic cycles imply chaos in the sense of Devaney. In addition, if a continuous differential map h has heteroclinic cycles in ℝ n , then g has heteroclinic cycles with h − g C 1 being sufficiently small. The results demonstrate C 1 structural stability of heteroclinic cycles. In the end, two examples are given to illustrate our theoretical results and applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom