z-logo
open-access-imgOpen Access
Multiscale Entropy Analysis of Gravitational Waves
Author(s) -
Mohsen Javaherian,
Saeid Mollaei
Publication year - 2021
Publication title -
advances in high energy physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.59
H-Index - 49
eISSN - 1687-7365
pISSN - 1687-7357
DOI - 10.1155/2021/6643546
Subject(s) - physics , gravitational wave , maximum entropy method , entropy (arrow of time) , gravitation , spacetime , observatory , statistical physics , astrophysics , computational physics , thermodynamics , quantum mechanics
The first gravitational-wave (GW) signal was detected in the year 2015 indicating tiny distortions of spacetime caused by accelerated masses. We focused on the GW signals consisting of a peak GW strain of 1.0 × 1 0 − 21 that shows merging pairs of large masses. We applied the generalized entropy known as multiscale entropy to the GW interval time series recorded by different observatories (H1, L1, and V1). This enables us to investigate the behavior of entropies on different scales as a method of studying complexity and organization. We found that the entropies of GW interval data with similar physical properties make the identical manner in different scales. Moreover, the results reveal that the signals collected by each observatory have approximately a similar trend in the multiscale analysis results. According to our findings, although different signals have different values for short-range correlations, the long-range correlations are not noticeable in most of them.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom