z-logo
open-access-imgOpen Access
Development of a Hybrid Method to Predict the Slope Surface Deformation Utilizing the Time Series and GA-Elman Models
Author(s) -
Gang Wang,
Zheng Fang,
Jiren Xie,
Na Du
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/6642456
Subject(s) - deformation (meteorology) , series (stratigraphy) , surface (topology) , landslide , component (thermodynamics) , extreme learning machine , genetic algorithm , algorithm , nonlinear system , support vector machine , time series , geology , computer science , reliability (semiconductor) , artificial intelligence , mathematics , geotechnical engineering , geometry , artificial neural network , machine learning , physics , paleontology , power (physics) , oceanography , quantum mechanics , thermodynamics
A reliable prediction of the surface deformation of slopes is vital to better assess the fatalities and economic losses caused by landslides. Many prediction methods have been proposed to estimate the surface deformation of landslides with nonlinear characteristics. However, these methods have low accuracy and poor applicability. In this paper, a new hybrid method for surface deformation prediction was proposed, which was deduced from the Wavelet Analysis, Genetic Algorithm (GA), and Elman Algorithm. In this method, the slope surface deformation was decomposed into a trend component and a periodic component using the time series model, which were trained and predicted utilizing the GA-Elman model. The predicted slope surface deformation was the combination of the trend component and the periodic component. Then, the predicted results of slope surface deformation through GA-Elman were compared with the predicted results through Support Vector Machines (SVM), Extreme Learning Machine (ELM), Back Propagation (BP), and Genetic Algorithm-Back Propagation (GA-BP) models. The comparison was made with reference to the data retrieved from the on-site slopes and the laboratory tests. The results revealed that the proposed method highlighted reliability and could be used with higher accuracy to forecast the slope surface deformation in the process of landslides.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom