z-logo
open-access-imgOpen Access
Bidirectional Language Modeling: A Systematic Literature Review
Author(s) -
Muhammad Shah Jahan,
Habib Ullah Khan,
Shahzad Akbar,
Muhammad Umar Farooq,
Sarah Gul,
Anam Amjad
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/6641832
Subject(s) - computer science , transformer , sentence , language model , encoder , transfer of learning , artificial intelligence , feed forward , recurrent neural network , natural language processing , machine learning , artificial neural network , physics , quantum mechanics , voltage , control engineering , engineering , operating system
In transfer learning, two major activities, i.e., pretraining and fine-tuning, are carried out to perform downstream tasks. The advent of transformer architecture and bidirectional language models, e.g., bidirectional encoder representation from transformer (BERT), enables the functionality of transfer learning. Besides, BERT bridges the limitations of unidirectional language models by removing the dependency on the recurrent neural network (RNN). BERT also supports the attention mechanism to read input from any side and understand sentence context better. It is analyzed that the performance of downstream tasks in transfer learning depends upon the various factors such as dataset size, step size, and the number of selected parameters. In state-of-the-art, various research studies produced efficient results by contributing to the pretraining phase. However, a comprehensive investigation and analysis of these research studies is not available yet. Therefore, in this article, a systematic literature review (SLR) is presented investigating thirty-one (31) influential research studies published during 2018–2020. Following contributions are made in this paper: (1) thirty-one (31) models inspired by BERT are extracted. (2) Every model in this paper is compared with RoBERTa (replicated BERT model) having large dataset and batch size but with a small step size. It is concluded that seven (7) out of thirty-one (31) models in this SLR outperforms RoBERTa in which three were trained on a larger dataset while the other four models are trained on a smaller dataset. Besides, among these seven models, six models shared both feedforward network (FFN) and attention across the layers. Rest of the twenty-four (24) models are also studied in this SLR with different parameter settings. Furthermore, it has been concluded that a pretrained model with a large dataset, hidden layers, attention heads, and small step size with parameter sharing produces better results. This SLR will help researchers to pick a suitable model based on their requirements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom