z-logo
open-access-imgOpen Access
DMGA: A Distributed Shortest Path Algorithm for Multistage Graph
Author(s) -
Huanqing Cui,
Ruixue Liu,
Shaohua Xu,
Chuanai Zhou
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/6639008
Subject(s) - shortest path problem , computer science , shortest path faster algorithm , k shortest path routing , floyd–warshall algorithm , algorithm , longest path problem , widest path problem , distance , graph , mathematical optimization , theoretical computer science , mathematics
The multistage graph problem is a special kind of single-source single-sink shortest path problem. It is difficult even impossible to solve the large-scale multistage graphs using a single machine with sequential algorithms. There are many distributed graph computing systems that can solve this problem, but they are often designed for general large-scale graphs, which do not consider the special characteristics of multistage graphs. This paper proposes DMGA (Distributed Multistage Graph Algorithm) to solve the shortest path problem according to the structural characteristics of multistage graphs. The algorithm first allocates the graph to a set of computing nodes to store the vertices of the same stage to the same computing node. Next, DMGA calculates the shortest paths between any pair of starting and ending vertices within a partition by the classical dynamic programming algorithm. Finally, the global shortest path is calculated by subresults exchanging between computing nodes in an iterative method. Our experiments show that the proposed algorithm can effectively reduce the time to solve the shortest path of multistage graphs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom