On the Generic Uniqueness of Pareto-Efficient Solutions of Vector Optimization Problems
Author(s) -
Zhang De-jin,
Shuwen Xiang,
Yanlong Yang,
Xicai Deng
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/6637841
Subject(s) - uniqueness , vector optimization , pareto principle , mathematical optimization , mathematics , multi objective optimization , pareto efficiency , optimization problem , pareto optimal , nonlinear system , multi swarm optimization , mathematical analysis , physics , quantum mechanics
In this paper, the generic uniqueness of Pareto weakly efficient solutions, especially Pareto-efficient solutions, of vector optimization problems is studied by using the nonlinear and linear scalarization methods, and some further results on the generic uniqueness are proved. These results present that, for most of the vector optimization problems in the sense of the Baire category, the Pareto weakly efficient solution, especially the Pareto-efficient solution, is unique. Furthermore, based on these results, the generic Tykhonov well-posedness of vector optimization problems is given.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom