z-logo
open-access-imgOpen Access
Application of Rough Ant Colony Algorithm in Adolescent Psychology
Author(s) -
Cong Tao,
Lin Jiang,
Qihang Sun,
Yang Li
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/6636150
Subject(s) - ant colony optimization algorithms , premature convergence , juvenile delinquency , computer science , convergence (economics) , ant colony , algorithm , rough set , big data , artificial intelligence , mathematical optimization , data mining , mathematics , criminology , psychology , particle swarm optimization , economics , economic growth
With the rapid development of big data, big data research in the security protection industry has been increasingly regarded as a hot spot. This article mainly aims at solving the problem of predicting the tendency of juvenile delinquency based on the experimental data of juvenile blindly following psychological crime. To solve this problem, this paper proposes a rough ant colony classification algorithm, referred to as RoughAC, which first uses the concept of upper and lower approximate sets in rough sets to determine the degree of membership. In addition, in the ant colony algorithm, we use the membership value to update the pheromone. Experiments show that the algorithm can not only solve the premature convergence problem caused by stagnation near the local optimal solution but also solve the continuous domain and combinatorial optimization problems and achieve better classification results. Moreover, the algorithm has a good effect on predicting classification and can provide guidance for predicting the tendency of juvenile delinquency.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom