z-logo
open-access-imgOpen Access
Research on Energy-Saving Experimental of Critical Dehumidification of Combined Drying by Dehumidification Wheel and Heat Pump
Author(s) -
Jiaoling Wang,
Weidong Song,
Chengqian Jin,
Tianhang Ding,
Mingyou Wang,
Jinji Wu
Publication year - 2021
Publication title -
journal of food quality
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.568
H-Index - 43
eISSN - 1745-4557
pISSN - 0146-9428
DOI - 10.1155/2021/6635517
Subject(s) - heat pump , desiccant , liquid desiccant , relative humidity , humidity , moisture , energy consumption , materials science , thermodynamics , chemistry , process engineering , composite material , heat exchanger , engineering , physics , electrical engineering
In order to further decrease the energy consumption of desiccant wheel dehumidification, the drying medium circulation characteristics of a system combining heat pump drying with desiccant wheel dehumidification were investigated. Moreover, the critical dehumidification conversion mechanism was studied. The analysis of the heat pump hot air circulation system demonstrated that the heat pump system has the best dehumidification efficiency. Through the analysis of the system combining heat pump drying with desiccant wheel dehumidification, the critical conversion point was determined. The critical dehumidification mechanism was further verified using an online temperature and humidity measurement system. To investigate the effect of the critical point on energy consumption and drying quality and develop a drying model, response surface experiments were performed based on the effects of regeneration temperature, drying temperature, and conversion point relative humidity on rehydration, color difference, and specific moisture extraction rate (SMER). The optimal conversion point humidity was determined to be about 46% RH, which was slightly different from the test optimization value of 45.6% RH. In addition, comprehensive optimization and experimental verification of the influencing factors were conducted. The results demonstrated that the R2 values of the three models were greater than 0.98, and the experimental factors had a significant effect on drying quality and energy consumption. When the regeneration temperature was 96°C, the drying temperature was 53°C, the relative humidity of the conversion point was 46%, the color difference was 46.3, the rehydration ratio was 5.75, and the SMER was 1.62 kg/kW·h.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom