z-logo
open-access-imgOpen Access
Formulation, In Vitro Evaluation, and Toxicity Studies of A. vulgaris-co-AAm Carrier for Vildagliptin
Author(s) -
Samia Kausar,
Alia Erum,
Ume Ruqia Tulain,
Muhammad Ajaz Hussain,
Muhammad Farid-ul-Haq,
Nadia Shamshad Malik,
Ayesha Rashid
Publication year - 2021
Publication title -
advances in polymer technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.523
H-Index - 44
eISSN - 1098-2329
pISSN - 0730-6679
DOI - 10.1155/2021/6634780
Subject(s) - vildagliptin , materials science , monomer , swelling , fourier transform infrared spectroscopy , nuclear chemistry , mucilage , copolymer , polymer , swelling capacity , polymerization , polymer chemistry , chemical engineering , chemistry , composite material , medicine , ecology , metformin , engineering , biology , diabetes mellitus , endocrinology
This study investigated the use of Artemisia vulgaris L. seed mucilage as a new excipient for sustained delivery of Vildagliptin. Copolymeric carrier of A. vulgaris seed mucilage-co-AAm was devised by using acrylamide (AAm) as a monomer, methylene-bis-acrylamide (MBA) as a crosslinker, and potassium persulfate (KPS) as an initiator through free radical polymerization. Different formulations of A. vulgaris-co-AAm were devised by varying contents of polymer, monomer, crosslinking agent, initiator, and reaction temperature. Copolymeric structures were characterized through XRD analysis, Fourier transform infrared (FTIR) spectroscopy, TGA and DSC analysis, and scanning electron microscopy. Porosity, gel fraction, and Vildagliptin loading capacity of copolymers were also established. Swelling and in vitro drug release studies were conducted. XRD evaluation showed the alteration of the crystalline structure of Vildagliptin into an amorphous form. FTIR analysis confirmed the successful grafting of AAm to A. vulgaris seed mucilage backbone. Porosity was increased with increasing polymer concentration and reaction temperature while it was decreased with an increasing amount of AAm, MBA, and KPS. Gel content was decreased with increasing polymer concentration and reaction temperature while it was increased with an increasing amount of AAm, MBA, and KPS. Acute oral toxicity of copolymeric network was done in animal models to evaluate the safety. Copolymers showed the same swelling behavior at all pH 1.2, 4.5, 6.8, and 7.4. Vildagliptin release from copolymer showed a cumulative trend by increasing polymer content and reaction temperature, while a declining trend was observed with increasing contents of monomer, crosslinking agent, and initiator. Sustained release of Vildagliptin was observed from copolymers and release followed the Korsmeyer-Peppas model. From the acute oral toxicity studies, it is evident that newly synthesized copolymeric carriers are potentially safe for eyes, skin, and vital organs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom