z-logo
open-access-imgOpen Access
Research on Explosive Separation of Carbon Fiber Composite Weave Plate
Author(s) -
Zhijie He,
Meng Wang,
Kang Zhao,
Hong Su,
Zekan He,
Haijun Xuan
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/6633595
Subject(s) - composite material , materials science , shell (structure) , explosive material , composite number , tension (geology) , fiber , stress (linguistics) , structural engineering , compression (physics) , shock (circulatory) , engineering , linguistics , chemistry , philosophy , organic chemistry , medicine
By using the C-shaped metal lead shell and copper shell to wrap the detonating cord, the restraint of the explosion energy is improved, and the simple charge structure is used to achieve the purpose of effectively separating the carbon fiber composite woven plate in a limited and small space. The commercial software AUTODYN was used for numerical simulation, The monitoring points of stress, velocity, and specific internal energy were set up, combined with Tsai-Wu tensor strength criterion, the plate failure and the process of shell metal reflecting and absorbing energy when the plate was separated under the shell constraint were observed, respectively. Through further analysis of the experimental phenomena and calculated data, it is concluded that the main reason for the fracture failure of the plate is the opposing compression of the shock waves on both sides of the plate, and the layer cracks are caused by the tension of the stress wave in the later stage. The charge structure of the detonating cord wrapped by the metal shell can effectively use its inertia to restrain the explosion energy and improve the separation ability during the process of explosively separating the carbon fiber composite woven plate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom