z-logo
open-access-imgOpen Access
Rapid Quantification of Chlorpromazine Residues in Pork Using Nanosphere-Based Time-Resolved Fluorescence Immunoassay Analyzer
Author(s) -
Wei Wang,
Jingneng Wang,
Min Wang,
Juan Shen
Publication year - 2021
Publication title -
international journal of analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.352
H-Index - 16
eISSN - 1687-8779
pISSN - 1687-8760
DOI - 10.1155/2021/6633016
Subject(s) - chromatography , spectrum analyzer , fluorescence , immunoassay , chemistry , fluorescence polarization immunoassay , computer science , medicine , antibody , physics , immunology , telecommunications , quantum mechanics
Immunochromatographic assays are good analytical tools for the detection of drug residues. We report a nanosphere-based time-resolved fluorescence immunoassay (nano-TRFIA) based on a monoclonal antibody and a portable TRFIA analyzer for the rapid quantification of chlorpromazine (CPZ) residues in pork. Under optimal conditions, the nano-TRFIA detected CPZ residues within 6 min of sample pretreatment. The results showed good linearity ( R 2  = 0.991), with a limit of detection (LOD) of 0.32  μ g/kg, a wide dynamic range of 0.46–10.0  μ g/kg, and coefficients of variation (CVs) of the overall intrabatch and interbatch assays of 7.34% and 7.65%, respectively. The nano-TRFIA was also used to detect CPZ at different spiked concentrations in pork, and the results were confirmed via ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The nano-TRFIA was evaluated for the analysis of six commercial pork samples, and the results agreed well with those obtained via UPLC-MS/MS, without significant differences ( P > 0.05). Therefore, the proposed nano-TRFIA is a powerful alternative for the rapid and accurate quantification of CPZ residues in pork to meet the required Chinese maximum residue limits for veterinary drugs in foods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom