z-logo
open-access-imgOpen Access
A Small-Area, Low-Power Delta-Sigma DAC Applied to a Power-Specific Chip
Author(s) -
Peng Li,
Wei Xi,
Xiangjun Zeng,
Xiaobo Li,
Dandan Zheng
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/6630100
Subject(s) - oversampling , delta sigma modulation , chip , power (physics) , electrical engineering , filter (signal processing) , cmos , electronic engineering , switched capacitor , capacitor , engineering , physics , voltage , quantum mechanics
This paper introduces a small-area, low-power delta-sigma DAC that can support power line carrier communication. In order to achieve the oversampling ratio of 128, a three-stage cascaded half-band filter is utilized. An optimized sturdy MASH Δ Σ modulator was used to avoid instability caused by high-order shaping and reduce the area at the same time. The postanalog reconstruction includes a switched-capacitor DAC (SC DAC) and a 4-tap FIR/IIR hybrid filter, which not only meets the requirements of low power but also promotes the out-of-band SNR. The final chip is fabricated in a 55 nm CMOS process, occupies 0.08 mm2, and consumes 1.5 mW of analog power at 2.5 V supply. The simulation results show that the dynamic range is 85.7 dB, while the out-of-band SNR is 40.5 dB.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom