DDPG-Based Energy-Efficient Flow Scheduling Algorithm in Software-Defined Data Centers
Author(s) -
Zan Yao,
Ying Wang,
Luoming Meng,
Xuesong Qiu,
Peng Yu
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/6629852
Subject(s) - computer science , algorithm , software , data flow diagram , scheduling (production processes) , parallel computing , distributed computing , programming language , mathematical optimization , database , mathematics
With the rapid development of data centers, the energy consumption brought by more and more data centers cannot be underestimated. How to intelligently manage software-defined data center networks to reduce network energy consumption and improve network performance is becoming an important research subject. In this paper, for the flows with deadline requirements, we study how to design the rate-variable flow scheduling scheme to realize energy-saving and minimize the mean completion time (MCT) of flows based on meeting the deadline requirement. The flow scheduling optimization problem can be modeled as a Markov decision process (MDP). To cope with a large solution space, we design a DDPG-EEFS algorithm to find the optimal scheduling scheme for flows. The simulation result reveals that the DDPG-EEFS algorithm only trains part of the states and gets a good energy-saving effect and network performance. When the traffic intensity is small, the transmission time performance can be improved by sacrificing a little energy efficiency.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom