z-logo
open-access-imgOpen Access
Enhanced Comprehensive Learning Particle Swarm Optimization with Dimensional Independent and Adaptive Parameters
Author(s) -
Xiang Yu,
Yu Qiao
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/6628564
Subject(s) - particle swarm optimization , computer science , multi swarm optimization , artificial intelligence , mathematical optimization , machine learning , mathematics
Comprehensive learning particle swarm optimization (CLPSO) and enhanced CLPSO (ECLPSO) are two literature metaheuristics for global optimization. ECLPSO significantly improves the exploitation and convergence performance of CLPSO by perturbation-based exploitation and adaptive learning probabilities. However, ECLPSO still cannot locate the global optimum or find a near-optimum solution for a number of problems. In this paper, we study further bettering the exploration performance of ECLPSO. We propose to assign an independent inertia weight and an independent acceleration coefficient corresponding to each dimension of the search space, as well as an independent learning probability for each particle on each dimension. Like ECLPSO, a normative interval bounded by the minimum and maximum personal best positions is determined with respect to each dimension in each generation. The dimensional independent maximum velocities, inertia weights, acceleration coefficients, and learning probabilities are proposed to be adaptively updated based on the dimensional normative intervals in order to facilitate exploration, exploitation, and convergence, particularly exploration. Our proposed metaheuristic, called adaptive CLPSO (ACLPSO), is evaluated on various benchmark functions. Experimental results demonstrate that the dimensional independent and adaptive maximum velocities, inertia weights, acceleration coefficients, and learning probabilities help to significantly mend ECLPSO's exploration performance, and ACLPSO is able to derive the global optimum or a near-optimum solution on all the benchmark functions for all the runs with parameters appropriately set.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom