An ECG Signal Classification Method Based on Dilated Causal Convolution
Author(s) -
Hao Ma,
Chao Chen,
Qing Zhu,
Haitao Yuan,
Liming Chen,
Minglei Shu
Publication year - 2021
Publication title -
computational and mathematical methods in medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.462
H-Index - 48
eISSN - 1748-6718
pISSN - 1748-670X
DOI - 10.1155/2021/6627939
Subject(s) - convolutional neural network , computer science , convolution (computer science) , artificial intelligence , pattern recognition (psychology) , residual , artificial neural network , signal (programming language) , data mining , algorithm , programming language
The incidence of cardiovascular disease is increasing year by year and is showing a younger trend. At the same time, existing medical resources are tight. The automatic detection of ECG signals becomes increasingly necessary. This paper proposes an automatic classification of ECG signals based on a dilated causal convolutional neural network. To solve the problem that the recurrent neural network framework network cannot be accelerated by hardware equipment, the dilated causal convolutional neural network is adopted. Given the features of the same input and output time steps of the recurrent neural network and the nondisclosure of future information, the network is constructed with fully convolutional networks and causal convolution. To reduce the network depth and prevent gradient explosion or gradient disappearance, the dilated factor is introduced into the model, and the residual blocks are introduced into the model according to the shortcut connection idea. The effectiveness of the algorithm is verified in the MIT-BIH Atrial Fibrillation Database (MIT-BIH AFDB). In the experiment of the MIT-BIH AFDB database, the classification accuracy rate is 98.65%.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom