BMO Functions Generated by Weights on Ball Banach Function Spaces
Author(s) -
Ruimin Wu,
Songbai Wang
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/6626787
Subject(s) - combinatorics , mathematics
Let X be a ball Banach function space on ℝ n . We introduce the class of weights A X ℝ n . Assuming that the Hardy-Littlewood maximal function M is bounded on X and X ′ , we obtain that BMO ℝ n = α ln ω : α ≥ 0 , ω ∈ A X ℝ n . As a consequence, we have BMO ℝ n = α ln ω : α ≥ 0 , ω ∈ A L p · ℝ n ℝ n , where L p · ℝ n is the variable exponent Lebesgue space. As an application, if a linear operator T is bounded on the weighted ball Banach function space X ω for any ω ∈ A X ℝ n , then the commutator b , T is bounded on X with b ∈ BMO ℝ n .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom