z-logo
open-access-imgOpen Access
BMO Functions Generated by A X n Weights on Ball Banach Function Spaces
Author(s) -
Ruimin Wu,
Songbai Wang
Publication year - 2021
Publication title -
journal of function spaces
Language(s) - English
Resource type - Journals
eISSN - 2314-8896
pISSN - 2314-8888
DOI - 10.1155/2021/6626787
Subject(s) - combinatorics , mathematics
Let X be a ball Banach function space on ℝ n . We introduce the class of weights A X ℝ n . Assuming that the Hardy-Littlewood maximal function M is bounded on X and X ′ , we obtain that BMO ℝ n = α ln ω : α ≥ 0 , ω ∈ A X ℝ n . As a consequence, we have BMO ℝ n = α ln ω : α ≥ 0 , ω ∈ A L p · ℝ n ℝ n , where L p · ℝ n is the variable exponent Lebesgue space. As an application, if a linear operator T is bounded on the weighted ball Banach function space X ω for any ω ∈ A X ℝ n , then the commutator b , T is bounded on X with b ∈ BMO ℝ n .

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom