Sharp Bound of the Number of Zeros for a Liénard System with a Heteroclinic Loop
Author(s) -
Junning Cai,
Minzhi Wei,
Guoping Pang
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/6625657
Subject(s) - annulus (botany) , mathematics , saddle , heteroclinic cycle , upper and lower bounds , algebraic number , limit (mathematics) , loop (graph theory) , nilpotent , zero (linguistics) , pure mathematics , mathematical analysis , combinatorics , physics , bifurcation , homoclinic orbit , quantum mechanics , mathematical optimization , linguistics , philosophy , botany , nonlinear system , biology
In the presented paper, the Abelian integral I h of a Liénard system is investigated, with a heteroclinic loop passing through a nilpotent saddle. By using a new algebraic criterion, we try to find the least upper bound of the number of limit cycles bifurcating from periodic annulus.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom