Predicting Customer Turnover Using Recursive Neural Networks
Author(s) -
Abdullah Jafari Chashmi,
Vahid Rahmati,
Behrouz Rezasoroush,
Masumeh Motevalli Alamoti,
Mohsen Askari,
Faezeh Heydari Khalili
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/6623052
Subject(s) - computer science , artificial neural network , artificial intelligence
The most valuable asset for a company is its customers’ base. As a result, customer relationship management (CRM) is an important task that drives companies. By identifying and understanding the valuable customer segments, appropriate marketing strategies can be used to enhance customer satisfaction and maintain loyalty, as well as increase company retention. Predicting customer turnover is an important tool for companies to stay competitive in a fast-growing market. In this paper, we use the recurrent nerve sketch to predict rejection based on the time series of the lifetime of the customer. In anticipation, a key aspect of identifying key triggers is to turn off. To overcome the weakness of recurrent neural networks, the research model of the combination of LRFMP with the neural network has been used. In this paper, it was found that clustering by LRFMP can be used to perform a more comprehensive analysis of customers’ turnover. In this solution, LRFMP is used to execute customer segregation. The objective is to provide a new framework for LRFMP for macrodata and macrodata analysis in order to increase the problem of business problem solving and customer depreciation. The results of the research show that the neural networks are capable of predicting the LRFMP precursors of the customers in an effective way. This model can be used in advocacy systems for advertising and loyalty programs management. In the previous research, the LRFM and RFM algorithms along with the neural network and the machine learning algorithm, etc., have been used, and in the proposed solution, the use of the LRFMP algorithm increases the accuracy of the desired.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom