z-logo
open-access-imgOpen Access
SSCA-Net: Simultaneous Self- and Channel-Attention Neural Network for Multiscale Structure-Preserving Vessel Segmentation
Author(s) -
Jiajia Ni,
Jianhuang Wu,
Jing Tong,
Mingqiang Wei,
Zhengming Chen
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/6622253
Subject(s) - segmentation , computer science , artificial intelligence , feature (linguistics) , benchmark (surveying) , pattern recognition (psychology) , artificial neural network , channel (broadcasting) , market segmentation , image segmentation , cartography , geography , philosophy , linguistics , marketing , business , computer network
Vessel segmentation is a fundamental, yet not well-solved problem in medical image analysis, due to the complicated geometrical and topological structures of human vessels. Unlike existing rule- and conventional learning-based techniques, which hardly capture the location of tiny vessel structures and perceive their global spatial structures, we propose Simultaneous Self- and Channel-attention Neural Network (termed SSCA-Net) to solve the multiscale structure-preserving vessel segmentation (MSVS) problem. SSCA-Net differs from the conventional neural networks in modeling image global contexts, showing more power to understand the global semantic information by both self- and channel-attention (SCA) mechanism and offering high performance on segmenting vessels with multiscale structures (e.g., DSC: 96.21% and MIoU: 92.70% on the intracranial vessel dataset). Specifically, the SCA module is designed and embedded in the feature decoding stage to learn SCA features at different layers, in which the self-attention is used to obtain the position information of the feature itself, and the channel attention is designed to guide the shallow features to obtain global feature information. To evaluate the effectiveness of our SSCA-Net, we compare it with several state-of-the-art methods on three well-known vessel segmentation benchmark datasets. Qualitative and quantitative results demonstrate clear improvements of our method over the state-of-the-art in terms of preserving vessel details and global spatial structures.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom