z-logo
open-access-imgOpen Access
First-Principles Study of Structure, Elastic Properties, and Thermal Conductivity of Monolayer Calcium Hydrobromide
Author(s) -
SiHua Li,
Cui-E Hu,
Xiaolu Wang,
Cheng Yan
Publication year - 2021
Publication title -
advances in condensed matter physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.314
H-Index - 26
eISSN - 1687-8124
pISSN - 1687-8108
DOI - 10.1155/2021/6619252
Subject(s) - materials science , monolayer , thermal conductivity , hydrobromide , composite material , nanotechnology , chemistry
In recent years, some laboratories have been able to prepare calcium hydrobromide (CaHBr) by melting hydride and anhydrous bromide or metal and bromide in a hydrogen atmosphere at 900°C and have studied some of its properties. But there are few theoretical studies, especially the theoretical studies of monolayer CaHBr. We use the first-principles method to calculate the structure, elastic properties, and lattice thermal conductivity of the monolayer CaHBr based on the Boltzmann transport equation. We obtain a stable crystal structure by the optimization of monolayer CaHBr. By calculating the elastic constant of monolayer CaHBr, its mechanical stability is proved, and the elastic limit of monolayer CaHBr is obtained by biaxial tensile strain on monolayer CaHBr. And the corresponding phonon spectra show no imaginary frequency, indicating the dynamic stability of the monolayer CaHBr. By the ShengBTE code, we calculate the lattice thermal conductivity of the monolayer CaHBr, the iterative solution of BTE and RTA at 300 K–1200 K is obtained, and the lattice thermal conductivity at room temperature is κBTE ι 2.469W/m · K and κRTA ι 2.201W/m · K, respectively. It can be seen that the lattice thermal conductivity of monolayer CaHBr is low. And by analyzing the phonon spectrum, the scattering rate, and the mean free path of the phonons, the lattice thermal conductivity of monolayer CaHBrmainly depends on the acoustic modes.We hope this study can provide theoretical guidance for the experiments and practical application of monolayer CaHBr.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom